3 (Sem-5) ELE M 1

2016

ELECTRONICS

(Major)

Paper : 5.1

(Signals and Systems)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer all questions:

 $1 \times 7 = 7$

- (a) Give an example of a random signal.
- (b) Give an example of a time-variant signal.
- (c) Why is sampling theorem used?
- (d) What is convolution?
- (e) What is an LTI system?
- (f) What is the z-transform of 1?
- (g) What is a DFT?

(Turn Over)

A7/128

2. Answer all questions:

 $2 \times 4 = 8$

- (a) Define and draw a ramp function.
- (b) Give a mathematical expression of DFT of a signal.
- (c) Suppose two signals each of sequence length N are taking part in convolution. What shall be the length of the output sequence?
- (d) What shall be the Fourier transform of $e^{j(\omega-\omega_0)t}$?

3. Answer any three questions:

5×3=15

- (a) y(n) = x(n) + x(n-1) + x(n+1)Check the causality of the above system.
- (b) Give an example for each of the following:
 - (i) Linear system
 - (ii) System with memory
 - (iii) Stable system
 - (iv) Ramp function
 - (v) Singularity function
- (c) Let x(n) = [1, -1, 2, -2] be a signal be applied to a system h(n) = [1, -1]. The output is y(n) = x(n) * h(n). Determine y(n) using z-transform.

- (d) What are the differences between an IIR and an FIR system?
- (e) What is circular convolution? How is it different from linear convolution?
- (f) What are the effects of oversampling, normal sampling and undersampling in a signal? Explain using diagrams.

4. Answer any three questions:

10×3=30

(a) A signal is given as

$$x(n) = (1, -1, 2, -2)$$

Determine

$$y(n) = x(n) + 2x(n-1) + x(n+1)$$

- (b) Let x(n) = x(n-1) + 2x(n-3) + x(2n) be a system. Find the initial and final values of the system.
- (c) Prove that convolution in time domain is equivalent to multiplication in frequency domain.
- (d) Show that the recovery of a system from its samples is equivalent to passing the sampled signal through a lowpass filter.

- (e) Why is FFT required? Derive the steps of decimation in time algorithm. Show how decimation is achieved in the process.
- (f) For the waveform shown in figure below, find the Fourier transform.
