3 (Sem-3) MAT M 1

2017

MATHEMATICS

(Major)

Paper: 3.1

(Abstract Algebra)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: $1 \times 10 = 10$
 - (a) A surjective homomorphism from a group to another group is called
 - (i) endomorphism
 - (ii) automorphism
 - (iii) monomorphism
 - (iv) epimorphism

(Choose the correct option)

(b) State whether the following statement is true or false:

"Every integral domain is a field."

8A/97

(Turn Over)

(c) State whether the following statement is true or false:

The ring of all 2×2 matrices over reals under matrix addition and multiplication is an integral domain.

- (d) If the rings R and S are of characteristics m and n respectively, then the characteristics of the product ring $R \times S$ is
 - (i) mn
 - (ii) mⁿ
 - (iii) lcm [m, n]
 - (iv) gcd[m, n]

(Choose the correct option)

- (e) Define inner automorphism of a group G.
- (f) If G is a non-Abelian group of order p^3 , where p is a prime, then order of Z(G) (the centre of G) is
 - (i) either 1 or p
 - (ii) either p or p^2
 - (iii) either p^2 or p^3
 - (iv) either 1 or p^3

(Choose the correct option)

(Continued)

(g) State whether the following statement is true or false:

"Abelian group of order 15 is always cyclic."

- (h) Define kernel of a ring homomorphism.
- (i) Define subring of a ring.
- (j) Give the reason why the ideal $\langle 6 \rangle = \{6n : n \in Z\}$ is not a prime ideal of the ring of integers Z.

2. Answer the following:

 $2 \times 5 = 10$

- (a) Prove that a group G is Abelian if the map $\mu: G \to G$ defined by $\mu(x) = x^{-1}$, $\forall x \in G$ is a homomorphism.
- (b) Consider the homomorphism ψ from the group G to the group G'. Show that if G is simple, then either ψ is one-to-one or ψ maps each element of G to the identity element of G'.
- (c) If L is a left ideal of a ring R, then show that $\lambda(L) = \{x \in R : xa = 0 \ \forall a \in L\}$ is an ideal of R.
- (d) State Sylow's first and second theorems.
- (e) Give example (with justification) to show that quotient ring of an integral domain may not be an integral domain.

3. Answer any four of the following: 5×4

- (a) Show that the relation of isomorphism in the set of all groups is an equivalence relation.
- (b) Show that every non-zero finite integral domain is a field.
- (c) For any group G, prove that

$$\frac{G}{Z(G)} \equiv I(G)$$

Here, Z(G) is the centre of G and I(G) is the inner automorphism group of G.

(d) If R is a commutative ring, then show that an ideal P of R is prime if and only if for any two ideals A and B of R,

$$AB \subseteq P \Rightarrow \text{ either } A \subseteq P \text{ or } B \subseteq P$$

- (e) Prove that a non-empty subset W of a vector space V(F) is a subspace of V if and only if $\alpha u + \beta v \in W$, $\forall \alpha, \beta \in F$ and $\forall u, v \in W$.
- (f) Show that $\langle 4 \rangle = \{4n : n \in Z\}$ is a maximal ideal of the ring of even integers (E, +, .). Is $\langle 4 \rangle$ a prime ideal of E? 4+1=5

4. Answer the following questions: 10×

- (a) Let G be any group. If H is any subgroup and N be any normal subgroup of G, then show that—
 - (i) $H \cap N$ is a normal subgroup of G;
 - (ii) N is normal in $HN = \{x = hn : h \in H, n \in N\};$

(iii)
$$\frac{HN}{N} \cong \frac{H}{H \cap N}$$
. $2+2+6=10$

Or

Let f be a homomorphism from the group G onto the group G' and H be a subgroup of G, H' a subgroup of G'. Show that—

- (i) f(H) is a subgroup of G';
- (ii) $f^{-1}(H')$ is a subgroup of G containing $\ker f$, where $f^{-1}(H') = \{x \in G : f(x) \in H'\};$
- (iii) there exists one-to-one correspondence between the sets of subgroups of G containing ker f and subgroups of G'. 2+3+5=10

(b) Define ideal of a ring. If A and B are two ideals of a ring R, then show that their sum $A+B=\{a+b:a\in A,b\in B\}$ is also an ideal of R containing both A and B. Further, prove that $A+B=\langle A\cup B\rangle$, the ideal generated by $A\cup B$. 1+4+5=10

Or

Show that the intersection of any family of subspaces of a vector space is again a subspace. Also show that union of two subspaces of a vector space is a subspace if and only if one is contained in the other.

5+5=10

- (c) Let f be an endomorphism of the group G such that f commutes with every inner automorphism of G. Show that—
 - (i) $K = \{x \in G : f^2(x) = f(x)\}$ is a normal subgroup of G;

(ii) $\frac{G}{K}$ is Abelian. 5+5=10

Or

Let G be a finite group and p be a prime number such that p/o(G). Prove that there exists $x \in G$ such that o(x) = p.

(d) If D is an ideal of a ring R, then show that there exists a one-one, onto mapping between the set of all ideals of R, containing D and the set of ideals of $\frac{R}{R}$.

Or

Show that any ring can be embedded into a ring with unity.

8A-5000/97

10