Ex. Evaluate d'foi), where f(n) = (-n)(1-2n)(1-3n), the interval of differences being unity.

 sol^{n} Given f(n) = (1-n)(1-2n)(1-3n) $= (1-n)(1-5n+6n^{2})$

= 1-5m+6m-n+5m-6m3

 $=-6n^3+11n^2-6n-1$

ix. f (n) is a polynomial of degree 3.

 $A^{3}fm) = (-6)[3]$ $= (-6) \cdot 3.2.1$

=-36 +Am.

f(n)=anx+anx+uno

in f(n)=lnhan

cothere his the
interval of differents

Ex. Evaluate

20[(1-an)(1-bn)(1-(n3)(1-dn4)].

381" elearly, 50=(1-an)(1-bn)(1-cn3)(1-dnh)

will be a polynomial of degree 10. Also

the co-efficient of no will be about.

.. 2°f(m) = 10.1° abcd

= 10.1. abcd a for minan
= abcd 10.
Ams

(how I is The interval of differences.

One or More Missing terms:

To find the missing terms of the values of the function y = f(n). We have two mithods:

Method . 1:

Let n values out of (n+1) values of

y = f(n) are given for (n+1) values of n,

the values of n being equidistant,

Let the unknown value be M. We then

construct the difference table. Since

only n values of y are known, wer

can assume y = f(n) to be a polynomial

of degree (n-1) in 2e. Now equaling

to zero the difference we get the valuey M.

Method 2.

In case, we know the value of the diff. Then $A^{n} f(n) = \sum_{i=0}^{n} (-1)^{n-i} n_{i} f(n+ih),$

can be used to estimate the missing term. Let f(n) be a poly. of degree (n-1) in X. Then $\Delta^n f(n) = 0$ for all X.

 $\sum_{i=0}^{\infty} (-i)^{n-i} {}^{n}C_{i}f(n+ih) = 0$

From this eyn., we can find the missing term.

Note: Generally we use Method-1.

Ex. Estimate the missing term in the following table:

n	0	1	2	3	4
y=f(n)	1	3	9		81

sot. We construct lie following différence tables

n	7	47	a"y	137	47
0	1	2	4		
1 2	3	6.	y ₃ -15	y ₃ -19	124-443
3	73	73-9	90-273	105-373	
9	81	81-73		-	

We are given four values of y=f(a), so

3rd differences are constant and

consequently 4th difference is zero.

if y = 0

124-4y_3 = 0, from table

=> y_3 = 31, which is the required missing term.

Ex. Obtain the missing	g towns in the following
fall.	•

x	-	1	2	3	. 9	5	6	7	8
56	0	1	8	***	69	,.,	216	343	-512

Solution: We are given six values, so fith differences are constant and consequently sixth differences are zero,

ie. 16 f(n) = 0 + x

or, $(E-1)^{6}f(0)=0$

or, $(E^{6}-6E^{5}+15E^{4}-20E^{3}+15E^{2}-6E+1)f(0)=0$ [: 1+A = E]

or, f(x+6)-6f(x+5)+15f(x+4)-20f(x+3)+15f(x+2)-6f(x+1)+f(x)=0

Putting x=1 and (2), we get

 $f(7) - 6f(6) + 15f(5) - 20f(4) + 15f(3) - 6f(2) + f(1) = 0 \rightarrow 0$

2 f.(8) - 6f(7) + 15 f(6) - 20 f(5) + 15 f.(4) - 6 f.(3) + f(2) = 0-(i)

Pulling the values of \$(8), f(7), f(6), f(4), f(2), f(1) in
The egg (i) & (2i), we get,

(i) =) $343 - 6 \times 216 + 15f(5) - 20 \times 64 + 15f(3) - 6 \times 8 + 1 = 0$

=> 343 - 1296 +15f(s)-1280 +15f(3)-48+1=0

 \Rightarrow 15 f(5)+15 f(3) = 2280 \Rightarrow f(5) + f(3) = 152 - (iii)

3 4 3 1296 +1 1286 3 4 4 18 2624 -344

```
Again, (ii) >
    512 - 6x343 + 15x216, -20f(5) + 15x64 - 6f(3) + 8 = 0
   =) 512 - 2058 + 320 - 20 f(5) + 960 - 6f(3) + 8 = 0
   \Rightarrow 20 f(5) + 6 f(3) = 2662
    Subtracting, -71(3) = -18
           \Rightarrow f(3) = 27
   Putting The value of f(3) in (iii), we get
           f(5)+27=152
         =) f(5) = 125
 Thus the missing terms are 27 and 125
Ex. Estimate the missing term in the following table:
   76:012
 Soly (By 2nd methodise, by the alcone method)
  We are given 4 values, so 14 fm; = 0, 4 n
  => (E-1)4+6,=0,+(n)
  =) (E4-4E3+6E2-4E+1) f(n) = 0
   =) f (x+4)-4f(n+3)+6f(n+2)-4f(n+1)+fm)=0
 Putting n = 0, we get-
        f(4)-4f(3)+6f(2)-4f(+)+f(0)=0
      => 81 -4 f(3) + 6 x 2 -4 x 3 +1 =0, by The given table
     2) 4f(3)=124=>f(3)=31.
```

6(5)