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For example, eight students (called A-H) set up a tour-
nament among themselves. The top-listed student in each
bracket calls heads or tails when his or her opponent flips
a coin. If the call is correct, the student moves on to the
next bracket.

(a) How many coin flips are required to determine the
tournament winner?

(b) What is the probability that you can predict all of the
winners?

(¢) In NCAA Division I basketball, after the “play-in”
games, 64 teams participate in a single-elimination
tournament to determine the national champion.
Considering only the remaining 64 teams, how many
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games are required to determine the national cham-
pion?

(d) Assume that for any given game, either team has
an equal chance of winning. (That is probably not
true.) On page 43 of the March 22, 1999, issue, Time
claimed that the “mathematical odds of predicting all
63 NCAA games correctly is 1 in 75 million.” Do you
agree with this statement? If not, why not?

1.4-19. Extend Example 1.4-6 to an n-sided die. That is,
suppose that a fair n-sided die is rolled n independent
times. A match occurs if side i is observed on the ith trial,
i=1,2,...,n.

(a) Show that the probability of at least one match is

() =)

(b) Find the limit of this probability as n increases without
bound.

1.4-20. Hunters A and B shoot at a target with probabil-
ities of p; and p», respectively. Assuming independence,
can p; and p; be selected so that P(zero hits) = P(one
hit) = P(two hits)?

We begin this section by illustrating Bayes’ theorem with an example.

Example

Bowl B; contains two red and four white chips, bowl B; contains one red and two

1.5-1 white chips, and bowl B3 contains five red and four white chips. Say that the prob-
abilities for selecting the bowls are not the same but are given by P(B1) = 1/3,
P(By) = 1/6, and P(B3) = 1/2, where By, B;, and B3 are the events that bowls
B, B, and Bj are respectively chosen. The experiment consists of selecting a bowl
with these probabilities and then drawing a chip at random from that bowl. Let us
compute the probability of event R, drawing a red chip—say, P(R). Note that P(R)
is dependent first of all on which bowl is selected and then on the probability of
drawing a red chip from the selected bowl. That is, the event R is the union of the
mutually exclusive events B N R, By N R, and B3 N R. Thus,

P(R)=P(B1NR)+P(B;NR)+ P(BsNR)

= P(B1)P(R|B1) + P(B2)P(R| B2) + P(B3)P(R | B3)
12 11 15 4

“3676 372977

Suppose now that the outcome of the experiment is a red chip, but we do not know

from which bowl it was drawn. Accordingly, we compute the conditional probability

that the chip was drawn from bowl By, namely, P(B1 | R). From the definition of

conditional probability and the preceding result, we have
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PR = T
_ P(B)P(R| By)
P(B1)P(R|B1) + P(B2)P(R| By) + P(B3)P(R| B3)
_ (1/3)(2/6) _2
(1/3)(2/6) + (1/6)(1/3) + (1/2)(5/9) 8
Similarly,
P(B,NR) (1/6)(1/3) 1
PBAR="pmy = 4 ~8
and
Py Ry~ PEOR) _ (26/9) 5,

P(R) 4/9 8

Note that the conditional probabilities P(B1|R), P(B;|R), and P(B3|R) have
changed from the original probabilities P(B1), P(B;), and P(B3) in a way that agrees
with your intuition. Once the red chip has been observed, the probability concerning
B3 seems more favorable than originally because B3 has a larger percentage of red
chips than do B and Bj;. The conditional probabilities of B; and B, decrease from
their original ones once the red chip is observed. Frequently, the original probabili-
ties are called prior probabilities and the conditional probabilities are the posterior
probabilities. [

We generalize the result of Example 1.5-1. Let By, By, ..., B, constitute a
partition of the sample space S. That is,

S=31UBZU---UBmandBiﬂszﬂ,i;éj.

Of course, the events By, Bo, ..., B, are mutually exclusive and exhaustive (since
the union of the disjoint sets equals the sample space S). Furthermore, suppose the
prior probability of the event B; is positive; that is, P(B;) > 0,i =1, ...,m.If Ais an
event, then A is the union of m mutually exclusive events, namely,

A=(BINA)U(ByNA)U---U(B,NA).

Thus,

m

P(A) =) P(B;NA)

i=1
m
=" P(B)P(A|B)), (15-1)
i=1
which is sometimes called the law of total probability. If P(A) > 0, then

P(ByNA)

P(Br|A) = W,

k=1,2,...,m. (1.5-2)

Using Equation 1.5-1 and replacing P(A) in Equation 1.5-2, we have Bayes’
theorem:



Example
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P(Bi)P(A | By)

m >

Y P(B)P(A|B))

i=1

P(B|A) =

k=1,2,...,m.

The conditional probability P(By | A) is often called the posterior probability of By.
The next example illustrates one application of Bayes’ theorem.

In a certain factory, machines I, II, and III are all producing springs of the same
length. Of their production, machines I, II, and III respectively produce 2%, 1%,
and 3% defective springs. Of the total production of springs in the factory, machine
I produces 35%, machine II produces 25%, and machine III produces 40%. If one
spring is selected at random from the total springs produced in a day, by the law of
total probability, P(D) equals, in an obvious notation,

P(D) = P(I)P(D | I) + PUI)P(D | II) + P(II1)P(D | II)

(35 2+25 1+40 3\ 215

~ \100/\ 100 100 / \ 100 100 /\ 100/ = 10,000
If the selected spring is defective, the conditional probability that it was produced by
machine III is, by Bayes’ formula,

_ PUINP(D|IIT) _ (40/100)(3/100) _ 120
PUID) = P(D) ©215/10,000 215

Note how the posterior probability of III increased from the prior probability of 111
after the defective spring was observed, because 111 produces a larger percentage of
defectives than do I and II. m

A Pap smear is a screening procedure used to detect cervical cancer. For women
with this cancer, there are about 16% false negatives; that is,

P(T~ = test negative | C™ = cancer) = 0.16.
Thus,
P(T* =test positive | CT = cancer) = 0.84.
For women without cancer, there are about 10% false positives; that is,
P(T*|C™ =not cancer) = 0.10.
Hence,
P(T~ |C™ =not cancer) = 0.90.

In the United States, there are about 8 women in 100,000 who have this cancer;
that is,

P(C*) =0.00008; so P(C) = 0.99992.
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By Bayes’ theorem and the law of total probability,

P(CT|TY) =

P(Ctand TT)
P(TH)
(0.00008)(0.84)
~ (0.00008)(0.84) + (0.99992)(0.10)

672
~ 672 + 999,920

= 0.000672.

What this means is that for every million positive Pap smears, only 672 represent
true cases of cervical cancer. This low ratio makes one question the value of the pro-
cedure. The reason that it is ineffective is that the percentage of women having that
cancer is so small and the error rates of the procedure —namely, 0.16 and 0.10—are
so high. On the other hand, the test does give good information in a sense. The
posterior probability of cancer, given a positive test, is about eight times the prior

probability.

Exercises

1.5-1. Bowl B contains two white chips, bowl B; contains
two red chips, bowl B3 contains two white and two red
chips, and bowl B4 contains three white chips and one
red chip. The probabilities of selecting bowl By, B>, B3,
or By are 1/2, 1/4, 1/8, and 1/8, respectively. A bowl is
selected using these probabilities and a chip is then drawn
at random. Find

(a) P(W), the probability of drawing a white chip.

(b) P(B1 | W), the conditional probability that bowl B;
had been selected, given that a white chip was drawn.

1.5-2. Bean seeds from supplier A have an 85% ger-
mination rate and those from supplier B have a 75%
germination rate. A seed-packaging company purchases
40% of its bean seeds from supplier A and 60% from
supplier B and mixes these seeds together.

(a) Find the probability P(G) that a seed selected at
random from the mixed seeds will germinate.

(b) Given that a seed germinates, find the probability that
the seed was purchased from supplier A.

1.5-3. A doctor is concerned about the relationship
between blood pressure and irregular heartbeats. Among
her patients, she classifies blood pressures as high, nor-
mal, or low and heartbeats as regular or irregular and
finds that (a) 16% have high blood pressure; (b) 19%
have low blood pressure; (c) 17% have an irregular heart-
beat; (d) of those with an irregular heartbeat, 35% have
high blood pressure; and (e) of those with normal blood
pressure, 11% have an irregular heartbeat. What percent-
age of her patients have a regular heartbeat and low blood
pressure?

1.5-4. Assume that an insurance company knows the
following probabilities relating to automobile accidents
(where the second column refers to the probability that

the policyholder has at least one accident during the
annual policy period):

Age of Probability of Fraction of Company’s
Driver Accident Insured Drivers
16-25 0.05 0.10

26-50 0.02 0.55

51-65 0.03 0.20

66-90 0.04 0.15

A randomly selected driver from the company’s insured
drivers has an accident. What is the conditional probabil-
ity that the driver is in the 16-25 age group?

1.5-5. At a hospital’s emergency room, patients are clas-
sified and 20% of them are critical, 30% are serious, and
50% are stable. Of the critical ones, 30% die; of the seri-
ous, 10% die; and of the stable, 1% die. Given that a
patient dies, what is the conditional probability that the
patient was classified as critical?

1.5-6. A life insurance company issues standard, pre-
ferred, and ultrapreferred policies. Of the company’s
policyholders of a certain age, 60% have standard poli-
cies and a probability of 0.01 of dying in the next year,
30% have preferred policies and a probability of 0.008 of
dying in the next year, and 10% have ultrapreferred poli-
cies and a probability of 0.007 of dying in the next year.
A policyholder of that age dies in the next year. What are
the conditional probabilities of the deceased having had a
standard, a preferred, and an ultrapreferred policy?

1.5-7. A chemist wishes to detect an impurity in a certain
compound that she is making. There is a test that detects



an impurity with probability 0.90; however, this test indi-
cates that an impurity is there when it is not about 5%
of the time. The chemist produces compounds with the
impurity about 20% of the time; that is, 80% do not have
the impurity. A compound is selected at random from
the chemist’s output. The test indicates that an impurity
is present. What is the conditional probability that the
compound actually has an impurity?

1.5-8. A store sells four brands of tablets. The least
expensive brand, By, accounts for 40% of the sales. The
other brands (in order of their price) have the following
percentages of sales: By,30%; B3,20%; and B4, 10%. The
respective probabilities of needing repair during warranty
are 0.10 for By, 0.05 for By, 0.03 for B3, and 0.02 for By.
A randomly selected purchaser has a tablet that needs
repair under warranty. What are the four conditional
probabilities of being brand B;, i = 1,2,3,47?

1.5-9. There is a new diagnostic test for a disease that
occurs in about 0.05% of the population. The test is not
perfect, but will detect a person with the disease 99% of
the time. It will, however, say that a person without the
disease has the disease about 3% of the time. A person
is selected at random from the population, and the test
indicates that this person has the disease. What are the
conditional probabilities that

(a) the person has the disease?
(b) the person does not have the disease?

Discuss. HINT: Note that the fraction 0.0005 of diseased
persons in the population is much smaller than the error
probabilities of 0.01 and 0.03.

1.5-10. Suppose we want to investigate the percentage of
abused children in a certain population. To do this, doc-
tors examine some of these children taken at random
from that population. However, doctors are not perfect:
They sometimes classify an abused child (A™) as one not
abused (D7) or they classify a nonabused child (A7) as
one that is abused (D). Suppose these error rates are
P(D~|A") = 0.08 and P(D" | A™) = 0.05, respectively;
thus, P(DT|AT) = 0.92 and P(D~|A™) = 0.95 are the
probabilities of the correct decisions. Let us pretend that
only 2% of all children are abused; that is, P(A™) = 0.02
and P(A7) = 0.98.
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(a) Select a child at random. What is the probability that
the doctor classifies this child as abused? That is,
compute

P(D") = P(AT)P(Dt |AT) + P(AT)P(D' | A7).
(b) Compute P(A~ | D") and P(A* | D).
(¢) Compute P(A~ | D™) and P(A* | D).
(d) Are the probabilities in (b) and (c) alarming? This
happens because the error rates of 0.08 and 0.05 are

high relative to the fraction 0.02 of abused children in
the population.

1.5-11. At the beginning of a certain study of a group
of persons, 15% were classified as heavy smokers, 30%
as light smokers, and 55% as nonsmokers. In the five-
year study, it was determined that the death rates of
the heavy and light smokers were five and three times
that of the nonsmokers, respectively. A randomly selected
participant died over the five-year period; calculate the
probability that the participant was a nonsmoker.

1.5-12. A test indicates the presence of a particular dis-
ease 90% of the time when the disease is present and the
presence of the disease 2% of the time when the disease is
not present. If 0.5% of the population has the disease, cal-
culate the conditional probability that a person selected at
random has the disease if the test indicates the presence
of the disease.

1.5-13. A hospital receives two fifths of its flu vaccine
from Company A and the remainder from Company B.
Each shipment contains a large number of vials of vac-
cine. From Company A, 3% of the vials are ineffective;
from Company B, 2% are ineffective. A hospital tests n =
25 randomly selected vials from one shipment and finds
that 2 are ineffective. What is the conditional probability
that this shipment came from Company A?

1.5-14. Two processes of a company produce rolls of
materials: The rolls of Process I are 3% defective and the
rolls of Process II are 1% defective. Process I produces
60% of the company’s output, Process II 40%. A roll is
selected at random from the total output. Given that this
roll is defective, what is the conditional probability that it
is from Process 1?

HISTORICAL COMMENTS Most probabilists would say that the mathematics of
probability began when, in 1654, Chevalier de Méré, a French nobleman who liked
to gamble, challenged Blaise Pascal to explain a puzzle and a problem created from
his observations concerning rolls of dice. Of course, there was gambling well before
this, and actually, almost 200 years before this challenge, a Franciscan monk, Luca
Paccioli, proposed essentially the same puzzle. Here it is:

A and B are playing a fair game of balla. They agree to continue until one has six
wins. However, the game actually stops when A has won five and B three. How
should the stakes be divided?
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And over 100 years before de Méré’s challenge, a 16th-century doctor, Girolamo
Cardano, who was also a gambler, had figured out the answers to many dice prob-
lems, but not the one that de Méré proposed. Chevalier de Méré had observed this:
If a single fair die is tossed 4 times, the probability of obtaining at least one six was
slightly greater than 1/2. However, keeping the same proportions, if a pair of dice
is tossed 24 times, the probability of obtaining at least one double-six seemed to be
slightly less than 1/2; at least de Méré was losing money betting on it. This is when he
approached Blaise Pascal with the challenge. Not wanting to work on the problems
alone, Pascal formed a partnership with Pierre de Fermat, a brilliant young mathe-
matician. It was this 1654 correspondence between Pascal and Fermat that started
the theory of probability.

Today an average student in probability could solve both problems easily. For
the puzzle, note that B could win with six rounds only by winning the next three
rounds, which has probability of (1/2)° = 1/8 because it was a fair game of balla.
Thus, A’s probability of winning six rounds is 1 — 1/8 = 7/8, and stakes should be
divided seven units to one. For the dice problem, the probability of at least one six

in four rolls of a die is
5\4
1—(=) =0518
(8) =0

while the probability of rolling at least one double-six in 24 rolls of a pair of dice is

1-(=) =o049L
(%)

It seems amazing to us that de Méré could have observed enough trials of those
events to detect the slight difference in those probabilities. However, he won betting
on the first but lost by betting on the second.

Incidentally, the solution to the balla puzzle led to a generalization —namely, the
binomial distribution —and to the famous Pascal triangle. Of course, Fermat was the
great mathematician associated with “Fermat’s last theorem.”

The Reverend Thomas Bayes, who was born in 1701, was a Nonconformist
(a Protestant who rejected most of the rituals of the Church of England). While
he published nothing in mathematics when he was alive, two works were published
after his death, one of which contained the essence of Bayes’ theorem and a very
original way of using data to modify prior probabilities to create posterior probabili-
ties. It has had such an influence on modern statistics that many modern statisticians
are associated with the neo-Bayesian movement and we devote Sections 6.8 and 6.9
to some of these methods.




