VSEPR Theory

(HS second year)

By Dr. Manash Jyoti Deka

Covalent Bond Theories

1. VSEPR (valence shell electron pair repulsion model).

A set of empirical rules for predicting a molecular geometry using, as input, a correct Lewis Dot representation.

2. Valence Bond theory.

A more advanced description of orbitals in molecules. We emphasize just one aspect of this theory: Hybrid atomic orbitals.

Works especially well for organic molecules, which is the reason we don't scrap it entirely for MO theory.

3. Molecular Orbital theory.

The most modern and powerful theory of bonding. Based upon QM.

Covalent Bond Theories

1. VSEPR (valence shell electron pair repulsion model).

A set of empirical rules for predicting a molecular geometry using, as input, a correct Lewis Dot representation.

2. Valence Bond theory.

A more advanced description of orbitals in molecules. We emphasize just one aspect of this theory: Hybrid atomic orbitals.

Works especially well for organic molecules, which is the reason we don't scrap it entirely for MO theory.

3. Molecular Orbital theory.

The most modern and powerful theory of bonding. Based upon QM.

G. N. Lewis tried to develop a geometrical model for atoms and chemical bonding -- but failed.

G. N. Lewis 1875-1946

Gillespie and Nyholm devised a simple scheme for geometry based on the Lewis dot structure (VSEPR).

Valence shell electron pair repulsion (VSEPR) theory is a model in chemistry used to predict the shape of individual molecules based upon the extent of electron-pair electrostatic repulsion. It is also named Gillespie-Nyholm* theory after its two main developers. The acronym "VSEPR" is pronounced "vesper" for ease of pronunciation.

*Ronald J. Gillespie and Ronald S. Nyholm University College, London, 1957.

Ronald J. Gillespie 1924 -

Living in 3 Dimensions

What role does geometry play in chemical structure?

Gillespie and Nyholm looked at the structures of molecules of the form AX_n:

16 electrons

O-C-O angle: 180°

Linear Geometry

X-A-X angle: 180°

Linear Geometry

X-A-X angle: I 20°

Trigonal Geometry

24 electrons

F-B-F angle: I 20°

Trigonal Planar Geometry

X-A-X angle: 90°

Square Planar Geometry?

8 electrons

H-C-H angle: ? Tetrahedral Geometry

H-C-H angle: 109.47°

Tetrahedral Geometry

Green Triangle:

$$| + | = 2$$

Hypotenuse = $\sqrt{2}$

Gray Triangle:

2 + I = 3
Hypotenuse =
$$\sqrt{3}$$

Grey Angle = $\cos^{-1}(\sqrt{2}/\sqrt{3})$

Blue Triangle:

Blue Angle = $180 - 2 \times GA$

H-C-H angle: 109.47°

Tetrahedral Geometry

VSEPR in Solids: Diamond Structure

From CrystalMaker

Diamond

Also ZnS

C-C-C angle: 109.47°

Tetrahedral Site Symmetry

8 electrons

H-C-H angle: 109.47°

Tetrahedral Geometry

X-A-X angle: 72°

Pentagonal Planar Geometry?

PCI₅

40 electrons

CI-P-Cl angles: 90, I 20°

Trigonal Bipyramidal Geometry

X-A-X angle: 60°

Hexagonal Geometry?

SF₆

48 electrons

F-S-F angle: 90°

Octahedral Geometry

VSEPR in Solids: Body Centered Cubic Structure

From CrystalMaker

C-C-C angle: 90°

Octahedral Site Symmetry